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RATIONAL POINTS ON CONICS

The following procedure yields the set of rational points on a
conic C given an initial rational point: Take the initial point O,
and from that point project the conic C onto a rational line L.
Then, all points mapped to a rational point were originally
rational points, and vice versa.

Figure: Projecting a conic onto a line
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RATIONAL POINTS ON CONICS

If O and P are both rational points, then Q is also a rational
point, since two rational lines always intersect at a rational
point. If O and Q are rational points, then O and P are the roots
of the intersection of a conic and a line:

ax2 + bxy + cy2 + dx + ey + f = 0

Simplifies to a quadratic by substituting y = mx + g, which is
our line L. Since the coefficients of the conic and the line are
rational, the coefficients of the quadratic are also rational. This
implies the sum of the roots are rational, but one root (O) is
already rational, so P must be as well. This shows the bijection
between rational points on C and rational points on L.
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ELLIPTIC CURVES

Our reading group mainly focused on the study of polynomials
of degree 3 and genus 1. One such example is Bachet’s
equation. By fixing an integer c ∈ Z, we look for rational
solutions to the Diophantine equation

y2 − x3 = c

The solutions to these equations using real numbers are called
cubic curves or elliptic curves, each of which is of the form

y2 = ax3 + bx2 + cx + d

but can be simplified into the Weierstrass form by substituting
x = x− b

3a :

y2 = ax3 + bx + c
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PROJECTIVE PLANE

We can transform these elliptic curves into the projective plane
by substituting y = Y

Z and x = X
Z . Now, the curves become

Y2 · Z = a · X3 + b · X · Z2 + c · Z3

Now, each point is expressed as [X, Y, Z]. If Z = 0, then the
point at infinity must be on the line y = Y

X · x. Otherwise, the
point is (X

Z , Y
Z ). This also means that the point [X, Y, Z] is the

same as the point [kX, kY, kZ]

Plugging in Z = 0 yields x = 0, so [0, 1, 0] is the only point at
infinity on each elliptic curve, denoted as O.
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BEZOUT’S LAW

Bezout’s law for general curves states that for a curve of degree
m and a curve of degree n, including overlapping points such
as tangency, they intersect at exactly mn points in the projective
plane.

Figure: The two cubics intersect at nine points
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ADDITION OF POINTS ON ELLIPTIC CURVES

To define the addition of points on elliptic curves, we need to
first define the ∗ operation.

Figure: The ∗ operation
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ADDITION OF POINTS ON ELLIPTIC CURVES, CONT.

To add P and Q, take the third intersection point P ∗Q, join it to
O by a line, and then take the third intersection point to be
P + Q. In other words, set P + Q = O ∗ (P ∗Q).

Figure: Addition of P and Q
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GROUPS

A group is a set of elements with an operation that satisfies
the condition of closure, associativity, identity and inverse.
An abelian group is a group that satisfies the
commutativity property.
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IDENTITY ELEMENT

Figure: O acts as an Identity Element

Because O acts as the Identity Element, with the operation
being +, which is obviously commutative, we see that the
points on the elliptic curve becomes a group, an abelian one at
that.
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MORDELL’S THEOREM

For a non-singular cubic curve C given by the equation

y2 = x3 + ax + b

for any a, b ∈ Z, we know that the group of rational points on
curve C is an abelian group.

Mordell’s Theorem states that

Theorem
The group of rational points of an elliptic curve has a finite number of
generators.
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HASSE-WEIL THEOREM

Theorem
If C is a non-singular irreducible curve of genus g defined over a
finite field Fp, then the number of points on C with coordinates in Fp
is equal to p + 1− ε, where the “error term” ε satisfies |ε| ≤ 2g

√
p.

For an elliptic curve C over a finite field Fp, the Hasse-Weil
theorem gives the estimate that the number of points of elliptic
curve C is

−2
√

p ≤ #C(Fp)− p− 1 ≤ 2
√

p
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APPLICATIONS

Elliptic curves over finite fields are easy to implement on any
computer, since the group law is a simple algebraic equation in
the coefficients. We can use the group structure to create a
number of algorithms.

Factorization of Large Numbers
Public Key Cryptography
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POLLARD’S METHOD

However, we see that Pollard’s method quickly grows
inefficient, as d should be a product of small primes to make the
calculations take up a smaller number of steps.
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LENSTRA’S FACTORIZATION METHOD

Although Pollard’s factorization method yields around log N
steps, Lenstra’s elliptic curve factorization method allows us to
keep factorizing.
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AN EXAMPLE OF LENSTRA’S

We can attempt to factor n = 1715761513.
1 Let x1 = 2, y1 = 3, so P = (2, 3). WLOG, for a given b let

c = 1− 2b. First, let b = 1 and c = −1.
2 As we cycle through steps 6 - 10, observe that for some d

Pd = dPd−1 = ...d!P1

Thus, let dmax = 20 and calculate up to 20!P in modulo n.
For example,

P20 = 20!P = 20!(2, 3) = (693588502, 858100579)

However, the whole point of Lenstra’s algorithm is that the
addition law has to break down when we obtain a
gcd(v, n) less than n for some v(mod n) so that the
algorithm terminates.

3 We can either keep going or pick different b and c’s for the
same dmax = 20.
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AN EXAMPLE OF LENSTRA’S (CONT.)

For b = 5 and c = −11, we hit the jackpot. Everything goes
smoothly up until

Q = 16!P = (962228801, 946564039) (mod 1715761513)

on the curve y2 = x3 + 5x− 9. To compute 17!P = 17Q, we
must add 16Q + Q. We first calculate that
16Q = (505708443, 718251590).

Next, we must find the inverse modulo n of the difference of
x-coordinates of Q and 16Q, so we need to invert

x(16Q)− x(Q) = 505708443− 962228801 = −456520358 (mod n)
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AN EXAMPLE OF LENSTRA’S (CONT.)

But when we use the Euclidean algorithm to compute the gcd
of this quantity and n, we find that

gcd(x(16Q)− x(Q), n) = gcd(−456520358, 1715761513) = 26927

This gives a non-trivial factor of n and also the complete prime
factorization of n, so we are done.

n = 1715761513 = 26927 · 63719
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CRYPTOGRAPHY

Discrete Logarithm Problem
Find an integer m that solves the congruence
an ≡ b(mod p)
Elliptic Curve Discrete Logarithm Problem
Given P, Q ∈ C(Fp), find an integer m such that mP = Q.
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ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM

Consider the elliptic curve

C : y2 = x3 + x2 + x + 1 over the field F97

Points P = (7,20) and Q = (17,46) are in C(F97). We can use the
"collision algorithm" to quickly solve for m.

Make two lists of P, 2P, 3P, ..., and Q− 10P, Q− 20P, Q− 30P, ...
until finding a common point aP = Q− 10P, so m = a + 10b.
We pick 10 because its close to

√
97.

Comparing the lists, one can quickly find the collision
7P = (8, 87) = Q− 40P, so 47P = Q.
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BENEFITS OF ELLIPTIC CURVE CRYPTOGRAPHY

The ECDLP is much more preferred over the DLP

Much harder to decrypt
Takes up much less bits
Much more efficient overall
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